Locomotive Control of a Wearable Lower Exoskeleton for Walking Enhancement
نویسندگان
چکیده
This article presents a wearable lower extremity exoskeleton (LEE) designed to augment the ability of a human to walk while carrying payloads. The ultimate goal of the current research is to design and control a wearable power-assisted system that integrates a human’s intellect as the control command. The system in this work consists of an inner exoskeleton and an outer exoskeleton. The inner system measures the movements of the human and controls the outer system, which follows the human movements and supports the payload. A special foot-unit was designed to measure the zero moment points (ZMPs) of the human and the exoskeleton simultaneously. Using the measured human ZMP as the reference, the exoskeleton’s ZMP is controlled by trunk compensation to achieve stable walking. A COTS program, xPC Target, together with toolboxes from MATLAB, were used as a real-time operating system and integrated development environment, and real-time locomotion control of the exoskeleton was successfully implemented in this environment. Finally, some walking experimental results, by virtue of the ZMP control for the inner and outer exoskeletons, show that the stable walking can be achieved.
منابع مشابه
Design and implementation of NTU wearable exoskeleton as an enhancement and assistive device
This article presents a wearable lower extremity exoskeleton (LEE) developed to enhance the ability of a human’s walking while carrying heavy loads. The ultimate goal of the current research work is to design and control a power assist system that integrates a human’s intellect for feedback and sensory purposes. The exoskeleton system in this work consists of an inner exoskeleton and an outer e...
متن کاملEffect of Target Impedance Selection on the Lower Extremity Assistive Exoskeleton Performance
Exoskeletons are utilized extensively in robotic rehabilitation and power augmentation purposes. One of the most recognised control algorithms utilized in this field is the impedance controller. Impedance control approach provides the capability of realizing different rehabilitation exercises by tuning the target impedance gains. Trial and error experimental approach is one of the most common m...
متن کاملComparison of Torque Controllers for an Ankle Exoskeleton with a Series Elastic Actuator Driven by a Uni-directional Bowden Cable during Walking
Exoskeletons have been used for human performance restoration and enhancement for many years. Due to the dynamic nature of human locomotion, torque control is widely used in lower-limb exoskeleton assistance during stance phases of walking. In these systems, series-elastic actuators (SEA) are commonly used to provide low error torque tracking in the presence of unknown and changing human dynami...
متن کاملWearable Gait Measurement System with an Instrumented Cane for Exoskeleton Control
In this research we introduce a wearable sensory system for motion intention estimation and control of exoskeleton robot. The system comprises wearable inertial motion sensors and shoe-embedded force sensors. The system utilizes an instrumented cane as a part of the interface between the user and the robot. The cane reflects the motion of upper limbs, and is used in terms of human inter-limb sy...
متن کاملAutomatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population
Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground ...
متن کامل